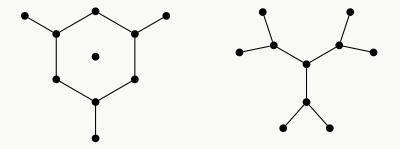
Robin Simoens

Ghent University & Universitat Politècnica de Catalunya

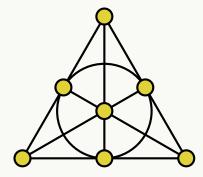
25 March 2025

Based on joint work with Aida Abiad (TU/e), Nils Van de Berg (TU/e) and Ferdinand Ihringer (SUSTech)

Cospectral mates



Both graphs have spectrum $\{(-\sqrt{5})^1, (-\sqrt{2})^2, (0)^3, (\sqrt{2})^2, (\sqrt{5})^1\}.$

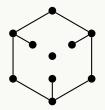


PG(2,2)

Theorem

Let Γ be a graph with a subgraph C of size 7 whose vertices are identified as points of the Fano plane, such that:

- ► C is empty or complete.
- Every vertex $v \notin C$ has 0, 3, 4 or 7 neighbours in C.
 - > If v has 3 neighbours in C, they form a line.
 - If v has 4 neighbours in C, they form the complement of a line.



Theorem

Let Γ be a graph with a subgraph C of size 7 whose vertices are identified as points of the Fano plane, such that:

- \succ C is empty or complete.
- Every vertex $v \notin C$ has 0, 3, 4 or 7 neighbours in C.
 - > If v has 3 neighbours in C, they form a line.
 - If v has 4 neighbours in C, they form the complement of a line.

Theorem

Let Γ be a graph with a subgraph C of size 7 whose vertices are identified as points of the Fano plane, such that:

 \succ C is empty or complete.

Every vertex $v \notin C$ has 0, 3, 4 or 7 neighbours in C.

> If v has 3 neighbours in C, they form a line.

If v has 4 neighbours in C, they form the complement of a line.

Theorem

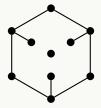
Let Γ be a graph with a subgraph C of size 7 whose vertices are identified as points of the Fano plane, such that:

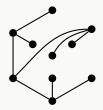
 \succ C is empty or complete.

Every vertex $v \notin C$ has 0, 3, 4 or 7 neighbours in C.

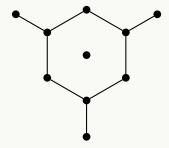
> If v has 3 neighbours in C, they form a line.

If v has 4 neighbours in C, they form the complement of a line.



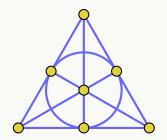


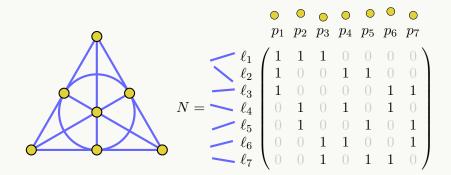
5/10

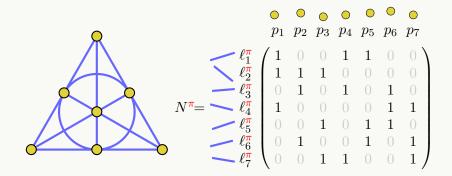


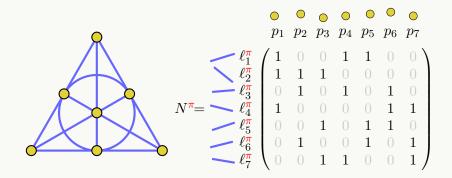


5/10









$$R = \frac{1}{2} \begin{pmatrix} N^T N^{\pi} - J \end{pmatrix}$$
 and $Q = \begin{pmatrix} R & O \\ O & I \end{pmatrix} \implies Q^T A Q = A^T$

Theorem

Let Γ be a graph with a subgraph C of size 7 whose vertices are identified as points of the Fano plane, such that:

- ► C is empty or complete.
- Every vertex $v \notin C$ has 0, 3, 4 or 7 neighbours in C.
 - > If v has 3 neighbours in C, they form a line.
 - If v has 4 neighbours in C, they form the complement of a line.

Theorem

Let Γ be a graph with a subgraph C of size q^2+q+1 whose vertices are identified as points of a projective plane of order q, such that:

- ► C is empty or complete.
- Every vertex $v \notin C$ has 0, q+1, q^2 or q^2+q+1 neighbours in C.
 - > If v has q+1 neighbours in C, they form a line.
 - > If v has q^2 neighbours in C, they form the complement of a line.

Let π be a permutation of the lines. For every $v \notin C$ that is (non)adjacent to the vertices of a line ℓ , make it (non)adjacent to the vertices of $\pi(\ell)$. The obtained graph is cospectral with Γ .

Projective plane switching

Theorem

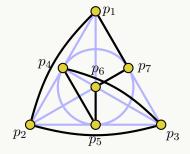
Let Γ be a graph with a subgraph C of size q^2+q+1 whose vertices are identified as points of a projective plane of order q, such that:

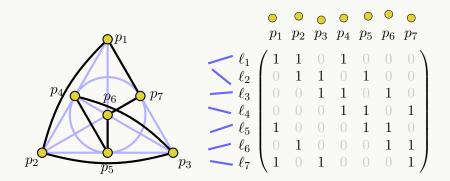
- C is empty or complete a Singer cycle.
- Every vertex $v \notin C$ has $0, q+1, q^2$ or q^2+q+1 neighbours in C.
 - > If v has q+1 neighbours in C, they form a line.
 - > If v has q^2 neighbours in C, they form the complement of a line.

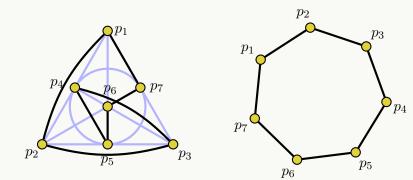
Let π be a bijection between the lines and some "new lines that respect the cyclic structure". For every $v \notin C$ that is (non)adjacent to the vertices of a line ℓ , make it (non)adjacent to the vertices of $\pi(\ell)$. The obtained graph is cospectral with Γ .

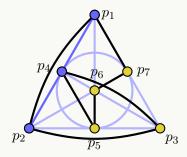
Projective plane switching

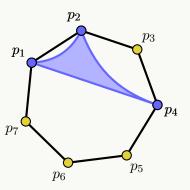
Singer cycles

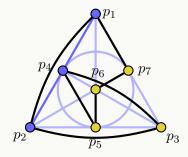


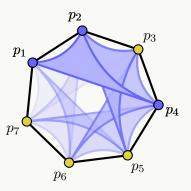


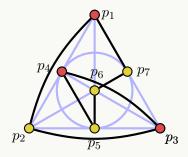


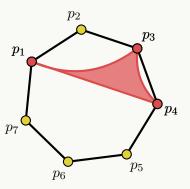


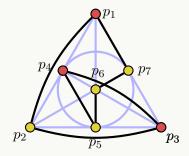


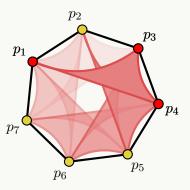












Theorem

Let Γ be a graph with a subgraph C ≅ C₇, labelled from 1 to 7.
Define l_i = {i, i+1, i+3} and O_i = {i, i+2, i+3} such that:
Every vertex v ∉ C has 0, 3, 4 or 7 neighbours in C.
If v has 3 neighbours in C, they form a set l_i.
If v has 4 neighbours in C, they are the complement of some l_i.
For every v ∉ C that is (non)adjacent to the vertices of l_i, make it

(non)adjacent to the vertices of \mathcal{O}_i . The obtained graph is cospectral with Γ .

Theorem

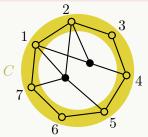
Let Γ be a graph with a subgraph $C \cong C_7$, labelled from 1 to 7. Define $\ell_i = \{i, i+1, i+3\}$ and $\mathcal{O}_i = \{i, i+2, i+3\}$ such that:

Every vertex $v \notin C$ has 0, 3, 4 or 7 neighbours in C.

> If v has 3 neighbours in C, they form a set ℓ_i .

If v has 4 neighbours in C, they are the complement of some ℓ_i .

For every $v \notin C$ that is (non)adjacent to the vertices of ℓ_i , make it (non)adjacent to the vertices of \mathcal{O}_i . The obtained graph is cospectral with Γ .



Theorem

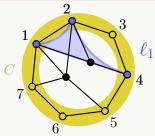
Let Γ be a graph with a subgraph $C \cong C_7$, labelled from 1 to 7. Define $\ell_i = \{i, i+1, i+3\}$ and $\mathcal{O}_i = \{i, i+2, i+3\}$ such that:

Every vertex $v \notin C$ has 0, 3, 4 or 7 neighbours in C .

> If v has 3 neighbours in C, they form a set ℓ_i .

> If v has 4 neighbours in C, they are the complement of some ℓ_i .

For every $v \notin C$ that is (non)adjacent to the vertices of ℓ_i , make it (non)adjacent to the vertices of \mathcal{O}_i . The obtained graph is cospectral with Γ .



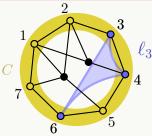
Theorem

Let Γ be a graph with a subgraph $C \cong C_7$, labelled from 1 to 7. Define $\ell_i = \{i, i+1, i+3\}$ and $\mathcal{O}_i = \{i, i+2, i+3\}$ such that:

Every vertex $v \notin C$ has 0, 3, 4 or 7 neighbours in C.

> If v has 3 neighbours in C, they form a set ℓ_i .

► If v has 4 neighbours in C, they are the complement of a set ℓ_i . For every $v \notin C$ that is (non)adjacent to the vertices of ℓ_i , make it (non)adjacent to the vertices of \mathcal{O}_i . The obtained graph is cospectral with Γ .



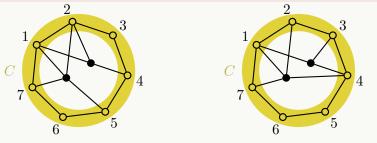
Theorem

Let Γ be a graph with a subgraph $C \cong C_7$, labelled from 1 to 7. Define $\ell_i = \{i, i+1, i+3\}$ and $\mathcal{O}_i = \{i, i+2, i+3\}$ such that:

Every vertex $v \notin C$ has 0, 3, 4 or 7 neighbours in C.

> If v has 3 neighbours in C, they form a set l_i .

► If v has 4 neighbours in C, they are the complement of a set ℓ_i . For every $v \notin C$ that is (non)adjacent to the vertices of ℓ_i , make it (non)adjacent to the vertices of \mathcal{O}_i . The obtained graph is cospectral with Γ .



9/10

Thank you for listening!

A. Abiad, N. Van de Berg and R. Simoens, Switching methods of level 2 for the construction of cospectral graphs, arXiv:2410.07948.